Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tetra-µ₃-bromido-tetrakis[trimethylplatinum(IV)]

Ah-Ran Song,^a In-Chul Hwang^b and Kwang Ha^a*

^aSchool of Applied Chemical Engineering, Center for Functional Nano Fine Chemicals, Chonnam National University, Gwangju 500-757, Republic of Korea, and ^bDepartment of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea Correspondence e-mail: hakwang@chonnam.ac.kr

Received 16 July 2007; accepted 28 July 2007

Key indicators: single-crystal X-ray study; T = 243 K; mean $\sigma(t-C) = 0.010$ Å; R factor = 0.033; wR factor = 0.078; data-to-parameter ratio = 26.5.

The title complex, $[Pt_4Br_4(CH_3)_{12}]$, the tetramer of trimethylplatinum(IV) bromide, reveals a distorted cubane-like structure and is disposed about a crystallographic mirror plane passing through two Pt atoms, two Br atoms and two methyl groups parallel to the ac plane. The tetrameric complex displays pseudo-cubic molecular symmetry, $\overline{43m}$. The coordination geometry around each Pt centre is distorted octahedral. The tetrameric units in the crystal structure are packed by hydrophobic interactions or van der Waals contacts.

Related literature

For historical background, see: Rundle & Sturdivant (1947); Atam & Müller (1974). For the corresponding tetrameric trimethylplatinum(IV) bromide with disordered toluene solvent, see: Massa et al. (1988). For related literature, see: Cowan et al. (1968); Donath et al. (1998); Preston et al. (1968); Spiro et al. (1968).

Experimental

Crystal data

$[Pt_4Br_4(CH_3)_{12}]$	
$M_r = 1280.41$	
Monoclinic, C2/m	
a = 13.8146 (12) Å	
$b = 14.0793 (12) \text{ \AA}$	
c = 12.8194 (11) Å	
$\beta = 95.681 \ (2)^{\circ}$	

Data collection

Bruker SMART 1000 CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\rm min} = 0.053, \ T_{\rm max} = 0.099$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.078$ S = 0.982655 reflections

V = 2481.1 (4) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 28.92 \text{ mm}^-$ T = 243 (2) K $0.15 \times 0.10 \times 0.08 \text{ mm}$

```
7252 measured reflections
2655 independent reflections
2189 reflections with I > 2\sigma(I)
R_{\rm int} = 0.035
```

100 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 1.37 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -1.86 \text{ e} \text{ Å}^{-3}$

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

This study was financially supported by Chonnam National University in 2006.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2029).

References

Atam, M. & Müller, U. (1974). J. Organomet. Chem. 71, 435-441.

- Bruker (2000). SADABS (Version 2.03), SMART (Version 5.618) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.
- Cowan, D. O., Krieghoff, N. G. & Donnay, G. (1968). Acta Cryst. B24, 287-288. Donath, H., Avtomonov, E. V., Sarraje, I., von Dahlen, K.-H., El-Essawi, M.,
- Lorberth, J. & Seo, B.-S. (1998). J. Organomet. Chem. 559, 191-196.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Massa, W., Baum, G., Seo, B.-S. & Lorberth, J. (1988). J. Organomet. Chem. 352, 415-420.
- Preston, H. S., Mills, J. C. & Kennard, C. H. L. (1968). J. Organomet. Chem. 14, 447-452
- Rundle, R. E. & Sturdivant, J. H. (1947). J. Am. Chem. Soc. 69, 1561-1567.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Spiro, T. G., Templeton, D. H. & Zalkin, A. (1968). Inorg. Chem. 7, 2165-2167.

supplementary materials

Acta Cryst. (2007). E63, m2259 [doi:10.1107/S160053680703704X]

Tetra- μ_3 -bromido-tetrakis[trimethylplatinum(IV)]

A.-R. Song, I.-C. Hwang and K. Ha

Comment

Trimethylplatinum(IV) halides, hydroxide and pseudohalides reveal structures of cubane-like clusters with the tetrameric unit, [{Pt(CH₃)₃L}₄] (L = F, Cl, Br, I, OH, N₃ *etc.*), and the tetrameric units show approximately –43*m* symmetry. F (Donath *et al.*, 1998), Cl (Rundle & Sturdivant, 1947) and OH clusters (Cowan *et al.*, 1968; Spiro *et al.*, 1968; Preston *et al.*, 1968; Donath *et al.*, 1998) are isostructural and crystallize in the cubic achiral space group I –43*m*. The N₃ cluster (Atam & Müller, 1974) crystallizes in the trigonal space group P –3*c*1. The crystal structure of trimethylplatinum(IV) bromide with toluene solvent was previously reported (Massa *et al.*, 1988), which crystallizes in the lower symmetric monoclinic space group C 2/m. This can be explained by hydrophobic interactions or packing effects of the structure.

The title complex shows a distorted cubane-type structure of the tetrameric [{Pt(CH₃)₃Br}₄] unit (Fig. 1), and is disposed about a mirror plane passing through atoms Pt1, Pt2, Br1, Br2, and two methyl groups C1 and C3, parallel to the a,c plane of the unit cell, which coincide with the crystallographic mirror plane m of space group C 2/m (Fig. 2). Each Pt⁴⁺ ion is coordinated by three methyl groups and three μ_3 -Br atoms, and the coordination geometry around respective Pt centre is distorted octahedral. Mean interatomic distances: Pt—Br 2.693 Å, Pt—C 2.028 Å, Pt…Pt 3.933 Å, Br…Br 3.668 Å. Mean bond angles: Br—Pt—Br 86.0°, Pt—Br—Pt 94.1°.

Experimental

To a solution of μ -[(1,2,5,6- η :3,4,7,8- η)-1,3,5,7-cyclooctatetraene]bis[dimethylplatinum(II)] (0.0965 g, 0.174 mmol) in CH₂Cl₂ (40 ml) and MeOH (5 ml) was added hydrobromic acid (48%; 0.0876 g, 0.519 mmol) and stirred for 4 h at room temparature. The solvent was removed *in vacuo*, the residue was washed with pentane, and dried, to give a dark yellow powder (0.0692 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH₂Cl₂ solution.

Refinement

H atoms were positioned geometrically and allowed to ride on their respective carrier atoms, with C—H = 0.97 Å and with $U_{iso}(H) = 1.5U_{eq}(C)$.

Figures

Fig. 1. The structure of the title compound, with displacement ellipsoids drawn at the 30% probability level for non-H atoms. H atoms are omitted.

Fig. 2. View of the unit-cell contents of the title compound.

Tetra-µ3-bromido-tetrakis[trimethylplatinum(IV)]

Crystal data

[Pt₄Br₄(CH₃)₁₂] $M_r = 1280.41$ Monoclinic, C2/m Hall symbol: -C 2y a = 13.8146 (12) Å b = 14.0793 (12) Å c = 12.8194 (11) Å $\beta = 95.681 (2)^{\circ}$ $V = 2481.1 (4) \text{ Å}^3$ Z = 4 $F_{000} = 2240$ $D_x = 3.428 \text{ Mg m}^{-3}$ Mo Ka radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2875 reflections $\theta = 2.5-26.4^{\circ}$ $\mu = 28.92 \text{ mm}^{-1}$ T = 243 (2) KPrism, yellow $0.15 \times 0.10 \times 0.08 \text{ mm}$

Data collection

Bruker SMART 1000 CCD diffractometer	2655 independent reflections
Radiation source: fine-focus sealed tube	2189 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.035$
T = 243(2) K	$\theta_{\text{max}} = 26.4^{\circ}$
φ and ω scans	$\theta_{\min} = 1.6^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2000)	$h = -11 \rightarrow 17$
$T_{\min} = 0.053, T_{\max} = 0.099$	$k = -17 \rightarrow 17$
7252 measured reflections	$l = -14 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.033$	H-atom parameters constrained
$wR(F^2) = 0.078$	$w = 1/[\sigma^2(F_o^2) + (0.0396P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 0.98	$(\Delta/\sigma)_{\rm max} < 0.001$
2655 reflections	$\Delta \rho_{max} = 1.37 \text{ e } \text{\AA}^{-3}$
100 parameters	$\Delta \rho_{\rm min} = -1.86 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Pt1	0.26473 (3)	0.5000	0.04527 (4)	0.03258 (14)
Pt2	0.19786 (4)	0.5000	0.33920 (4)	0.03475 (14)
Pt3	0.42659 (2)	0.36035 (2)	0.26219 (3)	0.03335 (12)
Br1	0.45060 (8)	0.5000	0.12802 (9)	0.0289 (3)
Br2	0.38834 (9)	0.5000	0.39601 (10)	0.0345 (3)
Br3	0.23514 (6)	0.36904 (5)	0.19303 (7)	0.0321 (2)
C1	0.1250 (9)	0.5000	-0.0110 (14)	0.067 (5)
H1A	0.1200	0.5000	-0.0870	0.100*
H1B	0.0935	0.5563	0.0133	0.100*
C2	0.2882 (7)	0.3993 (7)	-0.0637 (8)	0.051 (3)
H2A	0.3563	0.3815	-0.0564	0.077*
H2B	0.2707	0.4246	-0.1334	0.077*
H2C	0.2486	0.3439	-0.0530	0.077*
C3	0.0533 (8)	0.5000	0.2947 (11)	0.045 (3)
H3A	0.0180	0.5000	0.3564	0.067*
H3B	0.0364	0.4437	0.2532	0.067*
C4	0.1728 (8)	0.4010 (7)	0.4491 (8)	0.056 (3)
H4A	0.1798	0.3379	0.4203	0.084*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

0.1073	0.4087	0.4690	0.084*
0.2192	0.4092	0.5102	0.084*
0.4531 (7)	0.2591 (6)	0.1556 (8)	0.051 (3)
0.4689	0.2892	0.0914	0.076*
0.3957	0.2197	0.1408	0.076*
0.5072	0.2199	0.1836	0.076*
0.4019 (8)	0.2560 (7)	0.3638 (8)	0.054 (3)
0.3857	0.2836	0.4292	0.081*
0.4598	0.2171	0.3769	0.081*
0.3482	0.2168	0.3342	0.081*
0.5703 (7)	0.3580 (7)	0.3175 (9)	0.055 (3)
0.5817	0.4026	0.3751	0.082*
0.6094	0.3756	0.2618	0.082*
0.5880	0.2945	0.3420	0.082*
	0.1073 0.2192 0.4531 (7) 0.4689 0.3957 0.5072 0.4019 (8) 0.3857 0.4598 0.3482 0.5703 (7) 0.5817 0.6094 0.5880	0.10730.40870.21920.40920.4531 (7)0.2591 (6)0.46890.28920.39570.21970.50720.21990.4019 (8)0.2560 (7)0.38570.28360.45980.21710.34820.21680.5703 (7)0.3580 (7)0.58170.40260.60940.37560.58800.2945	0.10730.40870.46900.21920.40920.51020.4531 (7)0.2591 (6)0.1556 (8)0.46890.28920.09140.39570.21970.14080.50720.21990.18360.4019 (8)0.2560 (7)0.3638 (8)0.38570.28360.42920.45980.21710.37690.34820.21680.33420.5703 (7)0.3580 (7)0.3175 (9)0.58170.40260.37510.60940.37560.26180.58800.29450.3420

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pt1	0.0258 (3)	0.0422 (3)	0.0296 (3)	0.000	0.0016 (2)	0.000
Pt2	0.0380 (3)	0.0323 (2)	0.0361 (3)	0.000	0.0144 (2)	0.000
Pt3	0.0380 (2)	0.03095 (18)	0.0316 (2)	0.00585 (14)	0.00579 (16)	0.00379 (14)
Br1	0.0270 (6)	0.0359 (6)	0.0242 (6)	0.000	0.0049 (5)	0.000
Br2	0.0397 (7)	0.0398 (6)	0.0237 (6)	0.000	0.0027 (5)	0.000
Br3	0.0328 (5)	0.0284 (4)	0.0363 (5)	-0.0031 (3)	0.0093 (4)	-0.0019 (3)
C1	0.026 (7)	0.087 (11)	0.081 (13)	0.000	-0.021 (8)	0.000
C2	0.045 (6)	0.066 (6)	0.040 (6)	-0.004 (5)	-0.005 (5)	-0.011 (5)
C3	0.028 (7)	0.050 (8)	0.059 (10)	0.000	0.015 (7)	0.000
C4	0.076 (8)	0.051 (6)	0.043 (7)	-0.012 (5)	0.023 (6)	0.011 (5)
C5	0.059 (7)	0.039 (5)	0.055 (7)	0.008 (5)	0.008 (5)	-0.001 (5)
C6	0.065 (7)	0.050 (6)	0.050 (7)	0.001 (5)	0.011 (5)	0.024 (5)
C7	0.049 (7)	0.061 (7)	0.053 (7)	0.017 (5)	0.003 (5)	0.001 (5)

Geometric parameters (Å, °)

1.993 (13)	C1—H1A	0.9700
2.038 (9)	C1—H1B	0.9700
2.038 (9)	C2—H2A	0.9700
2.6794 (12)	C2—H2B	0.9700
2.7034 (9)	C2—H2C	0.9700
2.7034 (9)	С3—НЗА	0.9700
2.021 (12)	С3—Н3В	0.9700
2.035 (9)	C4—H4A	0.9700
2.035 (9)	C4—H4B	0.9700
2.6599 (13)	C4—H4C	0.9700
2.7143 (9)	С5—Н5А	0.9700
2.7143 (9)	C5—H5B	0.9700
2.015 (8)	С5—Н5С	0.9700
2.034 (9)	С6—Н6А	0.9700
	1.993 (13) 2.038 (9) 2.038 (9) 2.6794 (12) 2.7034 (9) 2.7034 (9) 2.021 (12) 2.035 (9) 2.035 (9) 2.6599 (13) 2.7143 (9) 2.7143 (9) 2.015 (8) 2.034 (9)	1.993(13) $C1-H1A$ $2.038(9)$ $C1-H1B$ $2.038(9)$ $C2-H2A$ $2.6794(12)$ $C2-H2B$ $2.7034(9)$ $C2-H2C$ $2.7034(9)$ $C3-H3A$ $2.021(12)$ $C3-H3B$ $2.035(9)$ $C4-H4A$ $2.6599(13)$ $C4-H4B$ $2.6599(13)$ $C5-H5A$ $2.7143(9)$ $C5-H5B$ $2.015(8)$ $C5-H5C$ $2.034(9)$ $C6-H6A$

Pt3—C7	2.041 (10)	С6—Н6В	0.9700
Pt3—Br1	2.6546 (8)	С6—Н6С	0.9700
Pt3—Br2	2.6958 (9)	С7—Н7А	0.9700
Pt3—Br3	2.7076 (9)	С7—Н7В	0.9700
Br1—Pt3 ⁱ	2.6546 (8)	С7—Н7С	0.9700
Br2—Pt3 ⁱ	2.6958 (9)		
C1—Pt1—C2	88.1 (5)	Pt3 ⁱ —Br1—Pt3	95.58 (4)
C1—Pt1—C2 ⁱ	88.1 (5)	Pt3 ⁱ —Br1—Pt1	94.60 (3)
C2—Pt1—C2 ⁱ	88.1 (6)	Pt3—Br1—Pt1	94.60 (3)
C1—Pt1—Br1	177.9 (5)	Pt2—Br2—Pt3 ⁱ	94.40 (3)
C2Pt1Br1	93.4 (3)	Pt2—Br2—Pt3	94.40 (3)
C2 ⁱ —Pt1—Br1	93.4 (3)	Pt3 ⁱ —Br2—Pt3	93.66 (4)
C1—Pt1—Br3 ⁱ	92.6 (4)	Pt1—Br3—Pt3	92.85 (3)
C2—Pt1—Br3 ⁱ	178.8 (3)	Pt1—Br3—Pt2	94.16 (3)
C2 ⁱ —Pt1—Br3 ⁱ	92.9 (3)	Pt3—Br3—Pt2	92.90 (3)
Br1—Pt1—Br3 ⁱ	85.87 (3)	Pt1—C1—H1A	109.5
C1—Pt1—Br3	92.6 (4)	Pt1—C1—H1B	109.5
C2—Pt1—Br3	92.9 (3)	H1A—C1—H1B	109.5
C2 ⁱ —Pt1—Br3	178.8 (3)	Pt1—C2—H2A	109.5
Br1—Pt1—Br3	85.87 (3)	Pt1—C2—H2B	109.5
Br3 ⁱ —Pt1—Br3	86.01 (4)	H2A—C2—H2B	109.5
C3—Pt2—C4 ⁱ	87.9 (4)	Pt1—C2—H2C	109.5
C3—Pt2—C4	87.9 (4)	H2A—C2—H2C	109.5
C4 ⁱ —Pt2—C4	86.4 (6)	H2B—C2—H2C	109.5
C3—Pt2—Br2	179.5 (4)	Pt2—C3—H3A	109.5
C4 ⁱ —Pt2—Br2	92.4 (3)	Pt2—C3—H3B	109.5
C4—Pt2—Br2	92.4 (3)	НЗА—СЗ—НЗВ	109.5
C3—Pt2—Br3	93.1 (3)	Pt2—C4—H4A	109.5
C4 ⁱ —Pt2—Br3	178.9 (3)	Pt2—C4—H4B	109.5
C4—Pt2—Br3	94.0 (3)	Н4А—С4—Н4В	109.5
Br2—Pt2—Br3	86.49 (3)	Pt2—C4—H4C	109.5
C3—Pt2—Br3 ⁱ	93.1 (3)	H4A—C4—H4C	109.5
C4 ⁱ —Pt2—Br3 ⁱ	94.0 (3)	H4B—C4—H4C	109.5
C4—Pt2—Br3 ⁱ	178.9 (3)	Pt3—C5—H5A	109.5
Br2—Pt2—Br3 ⁱ	86.49 (3)	Pt3—C5—H5B	109.5
Br3—Pt2—Br3 ⁱ	85.58 (4)	H5A—C5—H5B	109.5
C6—Pt3—C5	88.6 (4)	Pt3—C5—H5C	109.5
C6—Pt3—C7	89.1 (4)	H5A—C5—H5C	109.5
C5—Pt3—C7	89.4 (4)	H5B—C5—H5C	109.5
C6—Pt3—Br1	177.4 (3)	Pt3—C6—H6A	109.5
C5—Pt3—Br1	92.4 (3)	Pt3—C6—H6B	109.5
C7—Pt3—Br1	93.3 (3)	H6A—C6—H6B	109.5
C6—Pt3—Br2	93.7 (3)	Pt3—C6—H6C	109.5
C5—Pt3—Br2	177.3 (3)	H6A—C6—H6C	109.5

supplementary materials

C7—Pt3—Br2	92.1 (3)	H6B—C6—H6C	109.5
Br1—Pt3—Br2	85.24 (3)	Pt3—C7—H7A	109.5
C6—Pt3—Br3	91.3 (3)	Pt3—C7—H7B	109.5
C5—Pt3—Br3	92.7 (3)	Н7А—С7—Н7В	109.5
C7—Pt3—Br3	178.0 (3)	Pt3—C7—H7C	109.5
Br1—Pt3—Br3	86.28 (3)	Н7А—С7—Н7С	109.5
Br2—Pt3—Br3	85.92 (3)	H7B—C7—H7C	109.5
C5—Pt3—Br1—Pt3 ⁱ	-177.2 (3)	C6—Pt3—Br2—Pt3 ⁱ	178.4 (3)
C7—Pt3—Br1—Pt3 ⁱ	-87.7 (3)	C7—Pt3—Br2—Pt3 ⁱ	89.2 (3)
Br2—Pt3—Br1—Pt3 ⁱ	4.04 (4)	Br1—Pt3—Br2—Pt3 ⁱ	-3.97 (4)
Br3—Pt3—Br1—Pt3 ⁱ	90.25 (3)	Br3—Pt3—Br2—Pt3 ⁱ	-90.57 (3)
C5—Pt3—Br1—Pt1	87.7 (3)	C1—Pt1—Br3—Pt3	176.7 (4)
C7—Pt3—Br1—Pt1	177.2 (3)	C2—Pt1—Br3—Pt3	88.5 (3)
Br2—Pt3—Br1—Pt1	-91.04 (3)	Br1—Pt1—Br3—Pt3	-4.74 (2)
Br3—Pt3—Br1—Pt1	-4.84 (3)	Br3 ⁱ —Pt1—Br3—Pt3	-90.88 (3)
C2—Pt1—Br1—Pt3 ⁱ	176.2 (3)	C1—Pt1—Br3—Pt2	-90.2 (4)
C2 ⁱ —Pt1—Br1—Pt3 ⁱ	87.8 (3)	C2—Pt1—Br3—Pt2	-178.4 (3)
Br3 ⁱ —Pt1—Br1—Pt3 ⁱ	-4.85 (3)	Br1—Pt1—Br3—Pt2	88.37 (3)
Br3—Pt1—Br1—Pt3 ⁱ	-91.14 (3)	Br3 ⁱ —Pt1—Br3—Pt2	2.23 (4)
C2—Pt1—Br1—Pt3	-87.8 (3)	C6—Pt3—Br3—Pt1	-176.1 (3)
C2 ⁱ —Pt1—Br1—Pt3	-176.2 (3)	C5—Pt3—Br3—Pt1	-87.4 (3)
Br3 ⁱ —Pt1—Br1—Pt3	91.14 (3)	Br1—Pt3—Br3—Pt1	4.79 (3)
Br3—Pt1—Br1—Pt3	4.85 (3)	Br2—Pt3—Br3—Pt1	90.27 (3)
C4 ⁱ —Pt2—Br2—Pt3 ⁱ	-89.7 (3)	C6—Pt3—Br3—Pt2	89.6 (3)
C4—Pt2—Br2—Pt3 ⁱ	-176.3 (3)	C5—Pt3—Br3—Pt2	178.2 (3)
Br3—Pt2—Br2—Pt3 ⁱ	89.90 (3)	Br1—Pt3—Br3—Pt2	-89.53 (3)
Br3 ⁱ —Pt2—Br2—Pt3 ⁱ	4.12 (3)	Br2—Pt3—Br3—Pt2	-4.04 (3)
C4 ⁱ —Pt2—Br2—Pt3	176.3 (3)	C3—Pt2—Br3—Pt1	90.7 (3)
C4—Pt2—Br2—Pt3	89.7 (3)	C4—Pt2—Br3—Pt1	178.8 (3)
Br3—Pt2—Br2—Pt3	-4.12 (3)	Br2—Pt2—Br3—Pt1	-88.97 (3)
Br3 ⁱ —Pt2—Br2—Pt3	-89.90 (3)	Br3 ⁱ —Pt2—Br3—Pt1	-2.23 (4)
C6—Pt3—Br2—Pt2	-86.9 (3)	C3—Pt2—Br3—Pt3	-176.2 (3)
C7—Pt3—Br2—Pt2	-176.1 (3)	C4—Pt2—Br3—Pt3	-88.1 (3)
Br1—Pt3—Br2—Pt2	90.73 (3)	Br2—Pt2—Br3—Pt3	4.10 (3)
Br3—Pt3—Br2—Pt2	4.13 (3)	Br3 ⁱ —Pt2—Br3—Pt3	90.84 (3)
Symmetry codes: (i) x , $-y+1$, z .			

Fig. 1

